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Abstract 

Evaluation of high performance parallel systems is 
a delicate issue, due to the difficulty of generating 
workloads that represent, those that will run on actual 
systems. We overview the most usual workloads for 
performance evaluation purposes, in the scope of in-
terconnection networks simulation. Aiming to fill the 
gap between purely synthetic and application-driven 
workloads, we present a set of synthetic communica-
tion micro-kernels that enhance regular synthetic traf-
fic by adding point-to-point causality. They are con-
ceived to stress the interconnection architecture. As an 
example of the proposed methodology, we use these 
micro-kernels to evaluate a topological improvement 
of k-ary n-cubes. 

1. Introduction 

The interconnection network (IN) is a characteristic 
component in any parallel computer. Its performance 
has a definite impact on the overall execution time of 
applications, especially for those that are fine-grained 
and communication intensive. Thus, we should not 
decide lightly the interconnection infrastructure that 
links compute nodes in a high performance computing 
site. The evaluation of INs is a complex task that re-
quires a complete model of the network technology we 
want to assess. Once we have the model of the system, 
we ought to measure its performance, and some impor-
tant questions arise: How should we evaluate the IN? 
Should we measure only raw performance? Is it a bet-
ter idea to fine-tune the system for a given set of appli-
cations? There is not just a valid answer to these ques-
tions. Often, the most important performance figure 
lies simply in running Linpack, whose measured per-
formance is the sorting-key for the top500 list. Other 
places focus evaluations on the execution speed 
achievable by the applications currently in use. Alter-
natively, for a networking technology engineer, the 
most important evaluation concern is the raw perform-
ance of the product, i.e. a design that performs ac-
ceptably well in most scenarios. 

In this paper we propose a set of synthetic workload 
generators specifically designed to stress the IN. These 
workloads are to be used in simulation context as per-
formance measurement micro-kernels. They do not 
take advantage of locality in communications, and 
emulate different models of contention for the use of 
network resources. They are parameterizable, allowing 
the evaluation of INs using workloads with different 
number of communicating tasks, and different levels of 
task coupling. This represents a great advantage com-

pared to traces, where these characteristics are fixed—
scaling communications in a trace is not trivial. Fi-
nally, one of the most important advantages of this 
approach is that evaluating a system with such micro-
kernels is orders of magnitude faster than running a 
large set of applications. 

This paper is arranged as follows. Section 2 dis-
cusses methodologies used to evaluate parallel comput-
ing systems pointing out their capabilities and limita-
tions and motivates the use of the proposed micro-
kernels. Section 3 introduces and justifies the proposed 
workloads and gives some clues of how they stress the 
IN. In Section 4 this methodology is used to compare 
two different direct topologies: a torus and a twisted 
torus. Section 5 closes this paper with conclusions and 
future work. 

2. Related Work 

Synthetic traffic patterns from independent sources 
[6] provide a good first approach to evaluate an IN 
because they allow us to rapidly assess raw perform-
ance. Often, random traffic is used to evaluate systems: 
uniform, hot region and hot spot traffic patterns have 
been used in many studies [3, 4, 5, 10]. Other com-
monly used patterns are those that send packets from 
each source node to a destination one as indicated by a 
certain permutation. Some examples of these permuta-
tions are gathered in [6]. However actual applications 
do not use uncoordinated communication patterns like 
these. We can state that synthetic traffic patterns do not 
accurately mimic the behavior of applications [12]. 

Trace-driven simulation is often used to perform a 
more realistic evaluation of a system [6]. Feeding a 
simulator with a trace is not an easy task. To evaluate 
only the IN of a parallel system we could implement a 
dummy model of the processing node, allowing it to 
inject messages as fast as it can, ignoring the causality 
of messages and the computation intervals. This ap-
proach is a stress test, because of the contention gener-
ated by all nodes injecting at the maximum pace. It 
would be more realistic to maintain the causal relation-
ship between all the messages in the trace [7]. To fur-
ther improve the accuracy of the simulation, compute 
intervals should be taken into account, maybe applying 
a CPU scaling factor.  

A hybrid between the utilization of synthetic traffic 
patterns and traces is the spatial, inter-generation inter-
vals and message lengths probability distributions es-
timation, feeding some distribution-fitting software 
with the traces. We can generate random traffic follow-
ing distributions that resemble those of the traced ap-
plication. For example, the spatial distributions of 



some base parallel applications (namely “13 dwarves”) 
are plotted in [2].  

However use of traces has some problems that we 
should not ignore: the information within the trace can 
be inexact due to the logging mechanism and may re-
flect some of the characteristics of the system in which 
they were captured. Finally, traces from actual applica-
tions running in a large set of processors—those of 
interest in our performance studies—are hard to obtain, 
store and manage. 

The a priori most accurate methodology to evaluate 
a parallel computer would be running a detailed full-
system simulation that includes IN, CPUs, the OS, and 
the applications running on them. This is a very com-
plex and error-prone task, as discussed in [9]. It is also 
a high resource-consuming methodology that may need 
a system similar in dimension to the one to evaluate. 

In order to introduce causality in the simulation and 
narrow the gap between application-driven and syn-
thetic traffic from independent sources, a bursty traffic 
model was evaluated in [12]. This model uses synthetic 
traffic patterns and emulates application causality us-
ing a coarse-grained approach. The message generation 
process passes through a certain number of bursts. Dur-
ing a burst each node is able to inject only a given 
number of packets (b) before stalling until the burst is 
finished, i.e. all the packets are injected and received. 
Short bursts emulate tightly-coupled applications and 
long bursts emulate loosely-coupled applications. A 
primitive synchronization model is included (roughly a 
barrier every b packets); but fine-grained dependencies 
among messages/tasks are not considered. 

In [8] we proposed a set of micro-kernels aimed to 
fulfill the gap between purely-synthetic and applica-
tion-driven workloads which we focus on virtual to-
pologies and collective implementations. Within this 
paper we will increase our library of micro-kernels 
with a slightly different focus. The proposed workloads 
are devised as network-stressing benchmarks as they 
test different scenarios that make the IN to suffer con-
tention and lack of locality. 

3. Proposed Workloads 

This section describes and discusses the proposed 
micro-kernels. They are described algorithmically and, 
when possible, graphically. All the proposed work-

loads require the specification of a couple of parame-
ters: number of communicating tasks (N) and length of 
the messages (S). We identified tasks from 0 to N-1. 
Send(from, to, length) and Wait(from, to, 

length) functions, in the algorithmic definitions of the 
patterns, do what their names suggest: send a message 
to a destination or wait until a message from the de-
sired task arrives. Rnd(N) returns a random value uni-
formly distributed in the range [0, N). The 
Store(from, to, length) function stores sent mes-
sages in order to insert the corresponding receptions at 
the end of a wave. Regarding graphical description of 
the patterns, grey arrows represent top-down arranged 
tasks, i.e. the one at the top figure represents task 0 and 
the one at the bottom represents task N-1. Small black 
arrows represent messages: the rounded end represents 
a send, and the arrowhead represents a reception. 

Most scientific parallel applications use collectives 
to implement parts of their functionality: from scatter-
ing information to collecting results, or just to syn-
chronize a group of processes. For example, EP, IS and 
FT of the NAS Parallel Benchmarks rely completely 
on collective operations. The remaining applications in 
this suite also make use of them but only for initializa-
tion and result gathering purposes. In a previous work 
[8], we proposed optimized implementations of MPI 
collectives to be used as micro-kernels. As the aiming 
of this paper is to stress the network, non-optimized 
collectives are proposed. 

The one-to-all pattern (O2A) is composed by a 
wave of messages sent from a root task to the rest of 
the tasks in the group. This generates contention at 
injection-level. The spatial and causal pattern is de-
fined algorithmically and graphically in Fig. 1. In the 
all-to-one pattern (A2O) all the tasks in the group send 
a message to a single root task, a situation that gener-
ates contention at consumption level. Note that this 
contention may spread through the network, leading to 
highly congested scenarios. The spatial and causal pat-
terns of this workload are defined algorithmically and 
graphically in Fig. 2. In the all-to-all pattern (A2A) all 
the tasks have to communicate with the rest of the 
tasks in the group. In order to reduce contention at con-
sumption, each tasks n sends messages in order starting 
from its next task, i.e. to n+1, then to n+2, and so on. 
This pattern may generate a high level of contention 

one-to-all (N, S): 

  for d in [1, N) 

    Send(0, d, S) 

    Wait(d, 0, S) 

  endfor 

all-to-one (N, S): 

  for s in [1, N) 

    Send(0, s, S) 

    Wait(s, 0, S) 

  endfor 

all-to-all (N, S): 

  for t in [0, N) 

    for u in [1, N) 

      Send(t, (t+u) mod N, S) 

    end for 

  end for 

  for t in [0, N) 

    for u in [1, N) 

      Wait((t+u) mod N, t, S) 

    endfor 

  endfor 
   

 

 

 

 

 

 
Figure 1. One-to-All pattern Figure 2. All-to-One pattern Figure 3. All-to-All pattern 

 



for the use of resources. Algorithmic and graphical 
definitions of this pattern are shown in Fig. 3.  

As discussed in Section 2, random uniform traffic 
from independent sources is a widely accepted work-
load to evaluate INs. In this section we discuss how to 
enhance this model by adding support to point-to-point 
synchronization at task level. The synchronized, ran-
dom workload (SR) is algorithmically defined in Fig. 
4. It accepts two extra parameters: total number of 
messages (M) and number of messages per wave (W). 
In short, this workload generator creates waves of mes-
sages, with causal dependencies among them. A wave 
is defined as a set of message emissions that can be 
performed by tasks before waiting for the correspond-
ing receptions. After every communication phase we 
may include a computation phase. The source and des-
tination of the messages are selected uniformly in [0, 
N). If S and W are large enough, this workload may 
lead to highly congested states. If we reach the extreme 
scenario in which W and M are equal, all messages are 
sent in a single wave, and therefore no synchronization 
is involved. Then, we are emulating the RandomAc-
cess benchmark, a.k.a. giga-update-per-second 
(GUPS) from the High Performance Computing Chal-
lenge Benchmark Suite. 

We want to remark that uniform traffic stresses the 
network because it does not take advantage of commu-
nication locality; but in contrast, it is also a best-case 
scenario because, as traffic is evenly distributed 
through the network, it does not introduce bottlenecks. 

4. Example of the Proposed Methodology 

As an example of the proposed methodology we 
performed an evaluation of a topological enhancement 
for cube-like topologies. In [5] we proposed and dis-
cussed the twisted torus, which improves the topologi-
cal characteristics of the regular torus: increased 
throughput, reduced distance-related figures and bal-
anced utilization of the channels in X and Y dimen-
sions. However that study only used purely synthetic 
traffic: uniform and permutations. This paper evaluates 
small-size networks with 32 nodes arranged in an 8×4 
mesh with the proposed workloads using INSEE [11]. 
Depictions of the two topologies are shown in Fig. 5 
and Fig. 6. Note that these topologies are greatly re-
duced versions of those used in current MPPs such as 
IBM’s BlueGene/L [4] and Cray’s XT4 [1]. We used 
the three non-optimized collectives all-to-all (A2A), 
all-to-one (A2O) and one-to-all (O2A) with a fixed 

message length of 10KB. Regarding the random com-
munications, we generated 10000 messages of 1KB 
length each, and selected four different wave sizes: 10 
(SR10), 100 (SR100), 1000 (SR1000) and 10000 that, 
as explained before resembles the giga-update-per-
second benchmark (GUPS). In order to obtain trust-
worthy results we repeated the experiments 10 times 
for each of the four workloads, using different sets of 
messages and plotted the average execution time of the 
ten repetitions, showing the 99% confidence intervals. 

We measured the execution times needed by each 
topology to deliver all the traffic in the workloads and 
plotted them in Fig. 7. As running times for each work-
load are very different, we normalized them to those 
obtained by the torus. Reader can see that, as the ana-
lytical study in our previous paper supports, the twisted 
torus delivers all the workloads faster than the regular 
torus. The only exception is O2A. In this workload, 
injection is serialized at the (single) injection port of 
the source node, which becomes a bottleneck for both 
topologies. This situation results in almost identical 
execution times. Reader should note that A2A work-
load is the one in which differences in execution time 
are more evident. This is because this workload exerts 
great pressure over the X axis as its rings are longer 
than those in the Y axis. The twist in the Y axis of the 
twisted torus helps to alleviate this pressure by balanc-
ing the use of the two dimensions. This results in a 
measured time that is near 20% smaller than the time 
required by the regular torus topology. 

Focusing on the synchronized random workloads, 
we can see that the larger the number of messages of a 
wave, the larger is the performance improvement ob-
tained by twisting wrap-around Y links. This is be-
cause when waves are short the twisted torus is not 
able to show its benefits on bandwidth, and the execu-
tion time depends on average distance, that is smaller 
in the twisted torus. However as we are handling with 
small networks the reduction in average distance is 
close to negligible compared with the packet length. To 
further explore this issue, we made an exhaustive 
analysis of their behavior with different wave sizes. 

Fig. 8 shows the execution time of both torus and 
twisted torus when being fed by a workload composed 
by 16384 messages and a wide range of values of the 
wave size: W=2

k
 : 1≤k≤14. To easily compare them we 

also plotted the relative difference. It is clear that the 
larger the wave size is, the less time is required to de-
liver the workload, and the more noticeable are the 
benefits of the twisted torus topology.  

sync-rnd(N, S, M, W): 

  for t in [0, M) 

    src=Rnd(N) 

    dst=Rnd(N) 

    Send(src, dst, S) 

    Store(src, dst, S) 

    if W messages in Stored 

      for m in Stored 

        Wait(m.src, m.dst. m.S) 

      endfor 

      for n in [0, N) 

        Computation(n) 

      endfor 

    endif 

  endfor 

 
 

 
 

Figure 5. 
Regular Torus 8×4 

 
 

 
 

Figure 6. 
Twisted Torus 8×4 with twist 4 

Figure 4. Synchronized Random  
 



To summarize, we want to remind that results pre-
sented here are supported by the evaluation carried out 
in [5] and remark that the main objective of this paper 
is not to do a thorough comparison of topologies. This 
paper is aimed to introduce the most recent additions to 
our library of realistic synthetic workloads. This library 
allows us to evaluate INs in a realistic way, but several 
orders of magnitude faster and without the issues ob-
served by our group in trace-driven and execution-
driven evaluations. 

Table 1 closes this section showing the actual exe-
cution time, in a 3 GHz Pentium IV desktop PC, 
needed to simulate the two slowest micro-kernels 
(SR10 and A2A) and the Class A of the CG bench-
mark from the NAS parallel Benchmarks, all of them 
for 32 asks. The reader should note that simulations 
with our proposal are roughly 30 times faster than with 
traces. 

Table 1. Actual time to run simulation 

Workload Torus Twisted torus 

SR10 48 s. 46 s. 

A2A 35 s. 28 s. 

CG class A 1459 s. 1412 s. 

5. Conclusions and Future Work 

In this paper we have discussed methodologies to 
evaluate high-performance parallel systems, focusing 
on the workloads used in evaluations performed by 
means of simulation. These workloads can be purely 
synthetic or based on actual applications. Also, they 
can use causal or independent traffic sources. We have 
described the pros and cons of generating and using 
each one of these paradigms to evaluate INs. Further-
more, we proposed new synthetically-generated work-
loads that allow us to evaluate INs in a realistic way. 

We have characterized and justified several pseudo-
synthetic network-stressing workloads, organized in 
two groups. The first group includes emulations of 
message interchanges aimed to implement collective 
operations in a non-optimized way. They stress the IN 
because create contention at the consumption, at the 
injection or inside the network. The second group 
comprises random communications that involve task-
level point-to-point synchronization. These workloads 
increase our library of communication micro-kernels, 
described and discussed in [8]. The main benefits of 
using the proposed workloads are that they are com-
pletely parameterizable in terms of number of commu-
nicating tasks and application coupling. They also al-
low performing simulations faster than using applica-
tion-driven workloads which can lead to a wider explo-

ration of architecture designs. Moreover, as an example 
of how these synthetic workloads can be used in per-
formance-related studies, we have done a comparison 
of two direct topologies: a regular torus and a twisted 
torus, a topological enhancement of the torus. 

Acknowledgment 

This work was supported by the Spanish Ministry of 
Education and Science, grant TIN2007-68023-C02-02, 
and by the Basque Government, grant IT-242-07. Mr. 
Javier Navaridas is supported by a doctoral grant of the 
University of the Basque Country. 

References 

[1] SR Alam et al., “Cray XT4: An Early Evaluation for 
Petascale Scientific Simulation”, Proceedings of ACM/IEEE 
conference on Supercomputing, Nov 2007, Reno, Nevada. 
[2] K Asanovic et al. ''The Landscape of Parallel Computing 
Research: A View from Berkeley''. EECS Department. Uni-
versity of California, Berkeley. TR UCB/EECS-2006-183. 
[3] E. Baydal, P. Lopez and J. Duato. “A Family of Mecha-
nisms for Congestion Control in Wormhole Networks” IEEE 
Trans. on Parallel and Distributed Systems, V. 16, N. 9, Sept. 
2005, pp 772-784. 
[4] M Blumrich, et al. ''Design and Analysis of the 
BlueGene/L Torus Interconnection Network'' IBM Research 
Report RC23025 Dec. 2003. 
[5] JM Cámara et al. “Mixed-radix Twisted Torus Intercon-
nection Networks”. Parallel and Distributed Processing Sym-
posium, 2007. IPDPS 2007.  
[6] WJ Dally, B Towles. ''Principles and Practices of Inter-
connection Networks''. Morgan-Kaufmann, 2004. ISBN: 
0122007514, 9780122007514 
[7] J Miguel-Alonso, J Navaridas, FJ Ridruejo. "Interconnec-
tion network simulation using traces of MPI applications". 
International Journal of Parallel Programming. In Press. 
[8] J Navaridas, J Miguel-Alonso, FJ Ridruejo. “On synthe-
sizing workloads emulating MPI applications”. 9th Interna-
tional Workshop on Parallel and Distributed Scientific and 
Engineering Computing, Miami, April 18, 2008. 
[9] V Puente, C Izu, R Beivide, JA Gregorio, F Vallejo, JM 
Prellezo ''The Adaptive Bubble router'', Journal on Parallel 
and Distributed Computing, vol 61, Sept. 2001. 
[10] FJ Ridruejo, J Miguel-Alonso. ''INSEE: an Interconnec-
tion Network Simulation and Evaluation Environment''. Lec-
ture Notes in Computer Science, Volume 3648 / 2005. 
[11] FJ Ridruejo, J Miguel-Alonso, J Navaridas. “Full-
System Simulation of Distributed Memory Multicomputers”. 
Cluster Computing. In Press. DOI: 10.1007/s10586-009-
0086-y 
[12] FJ Ridruejo et al, ''Realistic Evaluation of Interconnec-
tion Network Performance'', 8th Intl Conference on Parallel 
and Distributed Computing Applications and Technologies, 
PDCAT 2007. December 3-6 2007, Adelaide, Australia. 

Torus 8x4 vs Twisted Torus 8x4

0.6

0.8

1

1.2

A2A A2O O2A GUPS R1000 R100 R10

N
o
rm

a
liz
e
d
 e
x
e
c
u
ti
o
n
 t
im

e
  
 

torus

twisted torus

 
Figure 7. Normalized execution time 
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Figure 8. Simulated time 


