
Realistic Evaluation of Interconnection Networks Using Synthetic Traffic

Javier Navaridas and Jose Miguel-Alonso

Department of Computer Architecture and Technology, The University of the Basque Country

P.O. Box 649, 20080 San Sebastian, Spain. E-mail: {javier.navaridas, j.miguel}@ehu.es

Abstract

Evaluation of high performance parallel systems is
a delicate issue, due to the difficulty of generating
workloads that represent, those that will run on actual
systems. We overview the most usual workloads for
performance evaluation purposes, in the scope of in-
terconnection networks simulation. Aiming to fill the
gap between purely synthetic and application-driven
workloads, we present a set of synthetic communica-
tion micro-kernels that enhance regular synthetic traf-
fic by adding point-to-point causality. They are con-
ceived to stress the interconnection architecture. As an
example of the proposed methodology, we use these
micro-kernels to evaluate a topological improvement
of k-ary n-cubes.

1. Introduction

The interconnection network (IN) is a characteristic
component in any parallel computer. Its performance
has a definite impact on the overall execution time of
applications, especially for those that are fine-grained
and communication intensive. Thus, we should not
decide lightly the interconnection infrastructure that
links compute nodes in a high performance computing
site. The evaluation of INs is a complex task that re-
quires a complete model of the network technology we
want to assess. Once we have the model of the system,
we ought to measure its performance, and some impor-
tant questions arise: How should we evaluate the IN?
Should we measure only raw performance? Is it a bet-
ter idea to fine-tune the system for a given set of appli-
cations? There is not just a valid answer to these ques-
tions. Often, the most important performance figure
lies simply in running Linpack, whose measured per-
formance is the sorting-key for the top500 list. Other
places focus evaluations on the execution speed
achievable by the applications currently in use. Alter-
natively, for a networking technology engineer, the
most important evaluation concern is the raw perform-
ance of the product, i.e. a design that performs ac-
ceptably well in most scenarios.

In this paper we propose a set of synthetic workload
generators specifically designed to stress the IN. These
workloads are to be used in simulation context as per-
formance measurement micro-kernels. They do not
take advantage of locality in communications, and
emulate different models of contention for the use of
network resources. They are parameterizable, allowing
the evaluation of INs using workloads with different
number of communicating tasks, and different levels of
task coupling. This represents a great advantage com-

pared to traces, where these characteristics are fixed—
scaling communications in a trace is not trivial. Fi-
nally, one of the most important advantages of this
approach is that evaluating a system with such micro-
kernels is orders of magnitude faster than running a
large set of applications.

This paper is arranged as follows. Section 2 dis-
cusses methodologies used to evaluate parallel comput-
ing systems pointing out their capabilities and limita-
tions and motivates the use of the proposed micro-
kernels. Section 3 introduces and justifies the proposed
workloads and gives some clues of how they stress the
IN. In Section 4 this methodology is used to compare
two different direct topologies: a torus and a twisted
torus. Section 5 closes this paper with conclusions and
future work.

2. Related Work

Synthetic traffic patterns from independent sources
[6] provide a good first approach to evaluate an IN
because they allow us to rapidly assess raw perform-
ance. Often, random traffic is used to evaluate systems:
uniform, hot region and hot spot traffic patterns have
been used in many studies [3, 4, 5, 10]. Other com-
monly used patterns are those that send packets from
each source node to a destination one as indicated by a
certain permutation. Some examples of these permuta-
tions are gathered in [6]. However actual applications
do not use uncoordinated communication patterns like
these. We can state that synthetic traffic patterns do not
accurately mimic the behavior of applications [12].

Trace-driven simulation is often used to perform a
more realistic evaluation of a system [6]. Feeding a
simulator with a trace is not an easy task. To evaluate
only the IN of a parallel system we could implement a
dummy model of the processing node, allowing it to
inject messages as fast as it can, ignoring the causality
of messages and the computation intervals. This ap-
proach is a stress test, because of the contention gener-
ated by all nodes injecting at the maximum pace. It
would be more realistic to maintain the causal relation-
ship between all the messages in the trace [7]. To fur-
ther improve the accuracy of the simulation, compute
intervals should be taken into account, maybe applying
a CPU scaling factor.

A hybrid between the utilization of synthetic traffic
patterns and traces is the spatial, inter-generation inter-
vals and message lengths probability distributions es-
timation, feeding some distribution-fitting software
with the traces. We can generate random traffic follow-
ing distributions that resemble those of the traced ap-
plication. For example, the spatial distributions of

some base parallel applications (namely “13 dwarves”)
are plotted in [2].

However use of traces has some problems that we
should not ignore: the information within the trace can
be inexact due to the logging mechanism and may re-
flect some of the characteristics of the system in which
they were captured. Finally, traces from actual applica-
tions running in a large set of processors—those of
interest in our performance studies—are hard to obtain,
store and manage.

The a priori most accurate methodology to evaluate
a parallel computer would be running a detailed full-
system simulation that includes IN, CPUs, the OS, and
the applications running on them. This is a very com-
plex and error-prone task, as discussed in [9]. It is also
a high resource-consuming methodology that may need
a system similar in dimension to the one to evaluate.

In order to introduce causality in the simulation and
narrow the gap between application-driven and syn-
thetic traffic from independent sources, a bursty traffic
model was evaluated in [12]. This model uses synthetic
traffic patterns and emulates application causality us-
ing a coarse-grained approach. The message generation
process passes through a certain number of bursts. Dur-
ing a burst each node is able to inject only a given
number of packets (b) before stalling until the burst is
finished, i.e. all the packets are injected and received.
Short bursts emulate tightly-coupled applications and
long bursts emulate loosely-coupled applications. A
primitive synchronization model is included (roughly a
barrier every b packets); but fine-grained dependencies
among messages/tasks are not considered.

In [8] we proposed a set of micro-kernels aimed to
fulfill the gap between purely-synthetic and applica-
tion-driven workloads which we focus on virtual to-
pologies and collective implementations. Within this
paper we will increase our library of micro-kernels
with a slightly different focus. The proposed workloads
are devised as network-stressing benchmarks as they
test different scenarios that make the IN to suffer con-
tention and lack of locality.

3. Proposed Workloads

This section describes and discusses the proposed
micro-kernels. They are described algorithmically and,
when possible, graphically. All the proposed work-

loads require the specification of a couple of parame-
ters: number of communicating tasks (N) and length of
the messages (S). We identified tasks from 0 to N-1.
Send(from, to, length) and Wait(from, to,

length) functions, in the algorithmic definitions of the
patterns, do what their names suggest: send a message
to a destination or wait until a message from the de-
sired task arrives. Rnd(N) returns a random value uni-
formly distributed in the range [0, N). The
Store(from, to, length) function stores sent mes-
sages in order to insert the corresponding receptions at
the end of a wave. Regarding graphical description of
the patterns, grey arrows represent top-down arranged
tasks, i.e. the one at the top figure represents task 0 and
the one at the bottom represents task N-1. Small black
arrows represent messages: the rounded end represents
a send, and the arrowhead represents a reception.

Most scientific parallel applications use collectives
to implement parts of their functionality: from scatter-
ing information to collecting results, or just to syn-
chronize a group of processes. For example, EP, IS and
FT of the NAS Parallel Benchmarks rely completely
on collective operations. The remaining applications in
this suite also make use of them but only for initializa-
tion and result gathering purposes. In a previous work
[8], we proposed optimized implementations of MPI
collectives to be used as micro-kernels. As the aiming
of this paper is to stress the network, non-optimized
collectives are proposed.

The one-to-all pattern (O2A) is composed by a
wave of messages sent from a root task to the rest of
the tasks in the group. This generates contention at
injection-level. The spatial and causal pattern is de-
fined algorithmically and graphically in Fig. 1. In the
all-to-one pattern (A2O) all the tasks in the group send
a message to a single root task, a situation that gener-
ates contention at consumption level. Note that this
contention may spread through the network, leading to
highly congested scenarios. The spatial and causal pat-
terns of this workload are defined algorithmically and
graphically in Fig. 2. In the all-to-all pattern (A2A) all
the tasks have to communicate with the rest of the
tasks in the group. In order to reduce contention at con-
sumption, each tasks n sends messages in order starting
from its next task, i.e. to n+1, then to n+2, and so on.
This pattern may generate a high level of contention

one-to-all (N, S):

 for d in [1, N)

 Send(0, d, S)

 Wait(d, 0, S)

 endfor

all-to-one (N, S):

 for s in [1, N)

 Send(0, s, S)

 Wait(s, 0, S)

 endfor

all-to-all (N, S):

 for t in [0, N)

 for u in [1, N)

 Send(t, (t+u) mod N, S)

 end for

 end for

 for t in [0, N)

 for u in [1, N)

 Wait((t+u) mod N, t, S)

 endfor

 endfor

Figure 1. One-to-All pattern Figure 2. All-to-One pattern Figure 3. All-to-All pattern

for the use of resources. Algorithmic and graphical
definitions of this pattern are shown in Fig. 3.

As discussed in Section 2, random uniform traffic
from independent sources is a widely accepted work-
load to evaluate INs. In this section we discuss how to
enhance this model by adding support to point-to-point
synchronization at task level. The synchronized, ran-
dom workload (SR) is algorithmically defined in Fig.
4. It accepts two extra parameters: total number of
messages (M) and number of messages per wave (W).
In short, this workload generator creates waves of mes-
sages, with causal dependencies among them. A wave
is defined as a set of message emissions that can be
performed by tasks before waiting for the correspond-
ing receptions. After every communication phase we
may include a computation phase. The source and des-
tination of the messages are selected uniformly in [0,
N). If S and W are large enough, this workload may
lead to highly congested states. If we reach the extreme
scenario in which W and M are equal, all messages are
sent in a single wave, and therefore no synchronization
is involved. Then, we are emulating the RandomAc-
cess benchmark, a.k.a. giga-update-per-second
(GUPS) from the High Performance Computing Chal-
lenge Benchmark Suite.

We want to remark that uniform traffic stresses the
network because it does not take advantage of commu-
nication locality; but in contrast, it is also a best-case
scenario because, as traffic is evenly distributed
through the network, it does not introduce bottlenecks.

4. Example of the Proposed Methodology

As an example of the proposed methodology we
performed an evaluation of a topological enhancement
for cube-like topologies. In [5] we proposed and dis-
cussed the twisted torus, which improves the topologi-
cal characteristics of the regular torus: increased
throughput, reduced distance-related figures and bal-
anced utilization of the channels in X and Y dimen-
sions. However that study only used purely synthetic
traffic: uniform and permutations. This paper evaluates
small-size networks with 32 nodes arranged in an 8×4
mesh with the proposed workloads using INSEE [11].
Depictions of the two topologies are shown in Fig. 5
and Fig. 6. Note that these topologies are greatly re-
duced versions of those used in current MPPs such as
IBM’s BlueGene/L [4] and Cray’s XT4 [1]. We used
the three non-optimized collectives all-to-all (A2A),
all-to-one (A2O) and one-to-all (O2A) with a fixed

message length of 10KB. Regarding the random com-
munications, we generated 10000 messages of 1KB
length each, and selected four different wave sizes: 10
(SR10), 100 (SR100), 1000 (SR1000) and 10000 that,
as explained before resembles the giga-update-per-
second benchmark (GUPS). In order to obtain trust-
worthy results we repeated the experiments 10 times
for each of the four workloads, using different sets of
messages and plotted the average execution time of the
ten repetitions, showing the 99% confidence intervals.

We measured the execution times needed by each
topology to deliver all the traffic in the workloads and
plotted them in Fig. 7. As running times for each work-
load are very different, we normalized them to those
obtained by the torus. Reader can see that, as the ana-
lytical study in our previous paper supports, the twisted
torus delivers all the workloads faster than the regular
torus. The only exception is O2A. In this workload,
injection is serialized at the (single) injection port of
the source node, which becomes a bottleneck for both
topologies. This situation results in almost identical
execution times. Reader should note that A2A work-
load is the one in which differences in execution time
are more evident. This is because this workload exerts
great pressure over the X axis as its rings are longer
than those in the Y axis. The twist in the Y axis of the
twisted torus helps to alleviate this pressure by balanc-
ing the use of the two dimensions. This results in a
measured time that is near 20% smaller than the time
required by the regular torus topology.

Focusing on the synchronized random workloads,
we can see that the larger the number of messages of a
wave, the larger is the performance improvement ob-
tained by twisting wrap-around Y links. This is be-
cause when waves are short the twisted torus is not
able to show its benefits on bandwidth, and the execu-
tion time depends on average distance, that is smaller
in the twisted torus. However as we are handling with
small networks the reduction in average distance is
close to negligible compared with the packet length. To
further explore this issue, we made an exhaustive
analysis of their behavior with different wave sizes.

Fig. 8 shows the execution time of both torus and
twisted torus when being fed by a workload composed
by 16384 messages and a wide range of values of the
wave size: W=2

k
 : 1≤k≤14. To easily compare them we

also plotted the relative difference. It is clear that the
larger the wave size is, the less time is required to de-
liver the workload, and the more noticeable are the
benefits of the twisted torus topology.

sync-rnd(N, S, M, W):

 for t in [0, M)

 src=Rnd(N)

 dst=Rnd(N)

 Send(src, dst, S)

 Store(src, dst, S)

 if W messages in Stored

 for m in Stored

 Wait(m.src, m.dst. m.S)

 endfor

 for n in [0, N)

 Computation(n)

 endfor

 endif

 endfor

Figure 5.
Regular Torus 8×4

Figure 6.
Twisted Torus 8×4 with twist 4

Figure 4. Synchronized Random

To summarize, we want to remind that results pre-
sented here are supported by the evaluation carried out
in [5] and remark that the main objective of this paper
is not to do a thorough comparison of topologies. This
paper is aimed to introduce the most recent additions to
our library of realistic synthetic workloads. This library
allows us to evaluate INs in a realistic way, but several
orders of magnitude faster and without the issues ob-
served by our group in trace-driven and execution-
driven evaluations.

Table 1 closes this section showing the actual exe-
cution time, in a 3 GHz Pentium IV desktop PC,
needed to simulate the two slowest micro-kernels
(SR10 and A2A) and the Class A of the CG bench-
mark from the NAS parallel Benchmarks, all of them
for 32 asks. The reader should note that simulations
with our proposal are roughly 30 times faster than with
traces.

Table 1. Actual time to run simulation

Workload Torus Twisted torus

SR10 48 s. 46 s.

A2A 35 s. 28 s.

CG class A 1459 s. 1412 s.

5. Conclusions and Future Work

In this paper we have discussed methodologies to
evaluate high-performance parallel systems, focusing
on the workloads used in evaluations performed by
means of simulation. These workloads can be purely
synthetic or based on actual applications. Also, they
can use causal or independent traffic sources. We have
described the pros and cons of generating and using
each one of these paradigms to evaluate INs. Further-
more, we proposed new synthetically-generated work-
loads that allow us to evaluate INs in a realistic way.

We have characterized and justified several pseudo-
synthetic network-stressing workloads, organized in
two groups. The first group includes emulations of
message interchanges aimed to implement collective
operations in a non-optimized way. They stress the IN
because create contention at the consumption, at the
injection or inside the network. The second group
comprises random communications that involve task-
level point-to-point synchronization. These workloads
increase our library of communication micro-kernels,
described and discussed in [8]. The main benefits of
using the proposed workloads are that they are com-
pletely parameterizable in terms of number of commu-
nicating tasks and application coupling. They also al-
low performing simulations faster than using applica-
tion-driven workloads which can lead to a wider explo-

ration of architecture designs. Moreover, as an example
of how these synthetic workloads can be used in per-
formance-related studies, we have done a comparison
of two direct topologies: a regular torus and a twisted
torus, a topological enhancement of the torus.

Acknowledgment

This work was supported by the Spanish Ministry of
Education and Science, grant TIN2007-68023-C02-02,
and by the Basque Government, grant IT-242-07. Mr.
Javier Navaridas is supported by a doctoral grant of the
University of the Basque Country.

References

[1] SR Alam et al., “Cray XT4: An Early Evaluation for
Petascale Scientific Simulation”, Proceedings of ACM/IEEE
conference on Supercomputing, Nov 2007, Reno, Nevada.
[2] K Asanovic et al. ''The Landscape of Parallel Computing
Research: A View from Berkeley''. EECS Department. Uni-
versity of California, Berkeley. TR UCB/EECS-2006-183.
[3] E. Baydal, P. Lopez and J. Duato. “A Family of Mecha-
nisms for Congestion Control in Wormhole Networks” IEEE
Trans. on Parallel and Distributed Systems, V. 16, N. 9, Sept.
2005, pp 772-784.
[4] M Blumrich, et al. ''Design and Analysis of the
BlueGene/L Torus Interconnection Network'' IBM Research
Report RC23025 Dec. 2003.
[5] JM Cámara et al. “Mixed-radix Twisted Torus Intercon-
nection Networks”. Parallel and Distributed Processing Sym-
posium, 2007. IPDPS 2007.
[6] WJ Dally, B Towles. ''Principles and Practices of Inter-
connection Networks''. Morgan-Kaufmann, 2004. ISBN:
0122007514, 9780122007514
[7] J Miguel-Alonso, J Navaridas, FJ Ridruejo. "Interconnec-
tion network simulation using traces of MPI applications".
International Journal of Parallel Programming. In Press.
[8] J Navaridas, J Miguel-Alonso, FJ Ridruejo. “On synthe-
sizing workloads emulating MPI applications”. 9th Interna-
tional Workshop on Parallel and Distributed Scientific and
Engineering Computing, Miami, April 18, 2008.
[9] V Puente, C Izu, R Beivide, JA Gregorio, F Vallejo, JM
Prellezo ''The Adaptive Bubble router'', Journal on Parallel
and Distributed Computing, vol 61, Sept. 2001.
[10] FJ Ridruejo, J Miguel-Alonso. ''INSEE: an Interconnec-
tion Network Simulation and Evaluation Environment''. Lec-
ture Notes in Computer Science, Volume 3648 / 2005.
[11] FJ Ridruejo, J Miguel-Alonso, J Navaridas. “Full-
System Simulation of Distributed Memory Multicomputers”.
Cluster Computing. In Press. DOI: 10.1007/s10586-009-
0086-y
[12] FJ Ridruejo et al, ''Realistic Evaluation of Interconnec-
tion Network Performance'', 8th Intl Conference on Parallel
and Distributed Computing Applications and Technologies,
PDCAT 2007. December 3-6 2007, Adelaide, Australia.

Torus 8x4 vs Twisted Torus 8x4

0.6

0.8

1

1.2

A2A A2O O2A GUPS R1000 R100 R10

N
o
rm

a
liz
e
d
 e
x
e
c
u
ti
o
n
 t
im

e

torus

twisted torus

Figure 7. Normalized execution time

Random Traffic - 16384 Messages

0

1

2

3

4

5

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

Wave Size (Bytes)

R
u
n
n
in
g
 T
im

e
 (
x
1
0
5
)

0.00

0.02

0.04

0.06

0.08

0.10

R
e
la
ti
v
e
 d
if
fe
re
n
c
e

torus

twisted torus

difference

Figure 8. Simulated time

